If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)=2
We move all terms to the left:
(x^2)-(2)=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| -1(7b-4)-4=-6(1+4b) | | 16d-9=279 | | 25,500+200x=47,900-800 | | 0.25x+12=0.75x | | 7d+17=115 | | 2x+2(4x+174)+12=180 | | ⅔x=36 | | 1x+9=4x+5 | | 5.4(2.718)^8x=7000 | | -2w-10=5w-24 | | 30x=56 | | 5/4x+21-x=48 | | 10x+7=1.6 | | (6x-4)°(6x-20)°=180 | | f(1)=-2(1)-4 | | -4+h)=3h | | x=2^0.5 | | -1/3+x=-6/7 | | f(1)=-6 | | 5v-29=-3(v+7) | | 4d-8=-16 | | P(x)=4x−3,Q(x)=x+4 | | 9x-5+6x=40 | | 600-20x=900-45x | | 6s-9s+2s-4=5 | | 4+8y=6 | | 4r-(r÷6)=12 | | 6(4w-1)=18 | | 5(2p+3)=10p+15 | | 5(2p+3)=10p+6 | | 4r-(r÷6)=12-36 | | 7x+12=8x-1 |